Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies. We present the experimental realization of these CSPs in the microwave regime on paper-like dielectric films with a thickness 600-fold smaller than the operating wavelength. The flexible paper-like films can be bent, folded, and even twisted to mold the flow of CSPs. metamaterials | plasmonics | waveguiding S urface plasmon polaritons (SPPs) are highly localized surface waves (1) that propagate along the interface between two materials whose real parts of electric permittivity have opposite signs, and decay exponentially in the transverse direction. At optical frequencies, metals behave like plasma with negative permittivity, and thus SPPs exist on metal-air interfaces (2, 3). Owing to their ability to confine light in a subwavelength scale with high intensity, SPPs can be used to overcome the diffraction limit, miniaturize photonic components, and build highly integrated optical components and circuits. Thus, they have found (or have potential) applications in biomedical sensing, near-field microscopy, optoelectronics, photovoltaics, and nanophotonics (4-11).In the far-infrared, terahertz, and microwave frequency bands, metals behave akin to perfectly electrical conductors (PECs), and thus SPPs cannot be supported by a metal surface. Although some designs based on metal wires or strips are able to support surface leaky modes that have some degree of lateral confinement at terahertz frequencies (12, 13), the concept of plasmonic metamaterials has proven very useful in the production of highly confined surface electromagnetic (EM) waves at low frequencies (14-27). Early work in this area can be traced back to the 1950s and 1960s, when corrugated metal structures were used to generate surface EM waves at microwave frequencies (14, 15). Generally, plasmonic metamaterials consist of metal surfaces decorated with 1D arrays of subwavelength grooves, 2D arrays of subwavelength holes/dimples, or 3D metal wires in which a periodic array of radial grooves is drilled (16-26). Recently, an alternative "spoof" SPP structure using complementary split-ring resonators as the unit cell elements has been proposed theoretically (27). The surface EM modes decorated by all of these plasmonic metamaterials are called spoof SPPs, or designer SPPs, because their properties are very similar to those of SPPs at optical frequencies. An important advantage of this metamaterial approach ...