Luminescence and optical absorption due to radiation damage centers in silicon has been studied exhaustively for decades, but is receiving new interest for applications as emitters for integrated silicon photonic technologies. While a variety of other optical transitions have been found to be much sharper in enriched 28 Si than in natural Si, due to the elimination of inhomogeneous isotopic broadening, this has not yet been investigated for radiation damage centers. We report results for the well-known G, W and C damage centers in highly enriched 28 Si, with optical linewidth improvements in some cases of over two orders of magnitude, revealing previously hidden fine structure in the G center emission and absorption. These results have direct implications for the linewidths to be expected from single center emission, even in natural Si, and for models for the G center structure. The advantages of 28 Si can be readily extended to the study of other radiation damage centers in Si. * thewalt@sfu.ca