2021
DOI: 10.48550/arxiv.2109.13237
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

DOODLER: Determining Out-Of-Distribution Likelihood from Encoder Reconstructions

Jonathan S. Kent,
Bo Li

Abstract: Deep Learning models possess two key traits that, in combination, make their use in the real world a risky prospect. One, they do not typically generalize well outside of the distribution for which they were trained, and two, they tend to exhibit confident behavior regardless of whether or not they are producing meaningful outputs. While Deep Learning possesses immense power to solve realistic, high-dimensional problems, these traits in concert make it difficult to have confidence in their real-world applicati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?