Many enzymes are inhibited by their own substrates, leading to velocity curves that rise to a maximum and then descend as the substrate concentration increases. Substrate inhibition is often regarded as a biochemical oddity and experimental annoyance. We show, using several case studies, that substrate inhibition often has important biological functions. In each case we discuss, the biological significance is different. Substrate inhibition of tyrosine hydroxylase results in a steady synthesis of dopamine despite large fluctuations in tyrosine due to meals. Substrate inhibition of acetylcholinesterase enhances the neural signal and allows rapid signal termination. Substrate inhibition of phosphofructokinase ensures that resources are not devoted to manufacturing ATP when it is plentiful. In folate metabolism, substrate inhibition maintains reactions rates in the face of substantial folate deprivation. Substrate inhibition of DNA methyltransferase serves to faithfully copy DNA methylation patterns when cells divide while preventing de novo methylation of methyl-free promoter regions.
Keywords:.b iological function; enzyme kinetics; substrate inhibitionThe kinetics of an enzymatic reaction are typically studied by varying the concentration of substrate and plotting the rate of product formation as a function of substrate concentration. In the conventional case this yields a typical hyperbolic Michaelis-Menten curve, and a linear reciprocal LineweaverBurk plot, from which the kinetic constants of the enzyme can be calculated. A surprisingly large number of enzymes do not behave in this conventional way. Instead, their velocity curves rise to a maximum and then decline as the substrate concentration goes up. This phenomenon is referred to as substrate inhibition, and it is estimated that it occurs in some 20% of enzymes [1]. A partial list of enzymes that show substrate inhibition appears in Box 1.Substrate inhibition is often interpreted as an abnormality that comes from using artificially high substrate concentration in a laboratory setting. In a review article on the mechanisms of substrate inhibition in 1994, Kuehl [2] commented that ''although recognized early on as an almost universal phenomenon, it has nevertheless met an almost universal disinterest. Probably the main reason for this neglect is that the majority of enzymologists and many authorities in the field regard substrate inhibition as being almost always a nonphysiological phenomenon.'' There are several reasons for suspecting that substrate inhibition is not a pathological phenomenon, but a biologically relevant regulatory mechanism. First, in many cases normal substrate concentrations are to the right of the velocity maximum, which indicates that these enzymes typically operate under substrate inhibition. Second, many enzymes have specialized sites where a second substrate molecule can bind and act as an allosteric inhibitor. For those enzymes, substrate inhibition is clearly a specially evolved property. Third, evidence is accumulating that substr...