Gambling disorder is associated with deficits in reward-based learning, but the underlying computational mechanisms are still poorly understood. Here, we examined this issue using a stationary reinforcement learning task in combination with computational modeling and functional resonance imaging (fMRI) in individuals that regular participate in gambling (n = 23, seven fulfilled one to three DSM 5 criteria for gambling disorder, sixteen fulfilled four or more) and matched controls (n = 23). As predicted, the gambling group exhibited substantially reduced accuracy, whereas overall response times (RTs) were not reliably different between groups. We then used comprehensive modeling using reinforcement learning drift diffusion models (RLDDMs) in combination with hierarchical Bayesian parameter estimation to shed light on the computational underpinnings of this performance deficit. In both groups, an RLDDM in which both non-decision time and decision threshold (boundary separation) changed over the course of the experiment accounted for the data best. The model showed good parameter and model recovery, and posterior predictive checks revealed that, in both groups, the model accurately reproduced the evolution of accuracies and RTs over time. Modeling revealed that, compared to controls, the learning impairment in the gambling group was linked to a more rapid reduction in decision thresholds over time, and a reduced impact of value-differences on the drift rate. The gambling group also showed shorter non-decision times. FMRI analyses replicated effects of prediction error coding in the ventral striatum and value coding in the ventro-medial prefrontal cortex, but there was no credible evidence for group differences in these effects. Taken together, our findings show that reinforcement learning impairments in disordered gambling are linked to both maladaptive decision threshold adjustments and a reduced consideration of option values in the choice process.