Cocaine conditioned place preference (CPP) is intact in dopamine transporter (DAT) knockout (KO) mice and enhanced in serotonin transporter (SERT) KO mice. However, cocaine CPP is eliminated in double-KO mice with no DAT and either no or one SERT gene copy. To help determine mechanisms underlying these effects, we now report examination of baselines and drug-induced changes of extracellular dopamine (DA ex ) and serotonin (5-HT ex ) levels in microdialysates from nucleus accumbens (NAc), caudate putamen (CPu), and prefrontal cortex (PFc) of wild-type, homozygous DAT-or SERT-KO and heterozygous or homozygous DAT/SERT double-KO mice, which are differentially rewarded by cocaine. Cocaine fails to increase DA ex in NAc of DAT-KO mice. By contrast, systemic cocaine enhances DA ex in both CPu and PFc of DAT-KO mice though local cocaine fails to affect DA ex in CPu. Adding SERT to DAT deletion attenuates the cocaine-induced DA ex increases found in CPu, but not those found in PFc. The selective SERT blocker fluoxetine increases DA ex in CPu of DAT-KO mice, while cocaine and the selective DAT blocker GBR12909 increase 5-HT ex in CPu of SERT-KO mice. These data provide evidence that (a) cocaine increases DA ex in PFc independently of DAT and that (b), in the absence of SERT, CPu levels of 5-HT ex can be increased by blocking DAT. Cocaine-induced alterations in CPu DA levels in DAT-, SERT-, and DAT/SERT double-KO mice appear to provide better correlations with cocaine CPP than cocaine-induced DA level alterations in NAc or PFc.