Establishment of a healthy ovarian reserve is contingent upon numerous regulatory pathways during embryogenesis. Previously, mice lacking TBP-associated factor 4b (Taf4b) were shown to exhibit a diminished ovarian reserve. However, potential oocyte-intrinsic functions of TAF4b have not been examined. Here we use a combination of gene expression profiling and chromatin mapping to characterize TAF4b-dependent gene regulatory networks in mouse oocytes. We find that Taf4b-deficient oocytes display inappropriate expression of meiotic, chromatin, and X-linked genes. Furthermore, dysregulated genes in Taf4b-deficient oocytes exhibit an unexpected amount of overlap with dysregulated genes in Turner Syndrome oocytes. Using Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we observed TAF4b enrichment at genes involved in chromatin remodeling and DNA repair, some of which are differentially expressed in Taf4b-deficient oocytes. Interestingly, TAF4b target genes were enriched for Sp/Klf family and NFY target motifs rather than TATA-box motifs, suggesting an alternate mode of promoter interaction. Together, our data connects several gene regulatory nodes that contribute to the precise development of the mammalian ovarian reserve.