Hydrogels present an attractive alternative to nanoscale block copolymer aggregates and microscale resin beads as potential asystemic serum cholesterol reduction materials. Not only would the oral delivery of these materials be more pleasant than the sand-like bile salt anion sequestrant beads but also the hydrogel preparation is much simpler than the copolymer aggregate analogues [Cameron, N. S.; Eisenberg, A.; Brown, G. R. Biomacromolecules 2002, 3, 116-123. Cameron, N. S.; Eisenberg, A.; Brown, G. R. Biomacromolecules 2002, 3, 124-132]. Our goal was to explore these materials building on our experience with bulk resins and self-assembled copolymers. In this paper, following a brief introduction to hydrogels and their application to hypercholesterolemia, the synthesis, characterization, and preliminary glycocholate binding properties of poly(N,N,N-trimethylammoniumalkyl acrylamide chloride)gel are presented [Cameron, N. S.; Eisenberg, A.; Brown, G. R. Polym. Preprints 2002, 43, 771-772].