The goal of this work is to validate the use of the Exradin W1 plastic scintillation detector (PSD) to measure profiles and output factors from Gamma Knife Perfexion collimators in a Lucy phantom.
The Exradin W1 PSD has a small-volume, near-water-equivalent, energy-independent sensitive element. Output measurements were performed for all 3 collimators (4 mm, 8 mm, and 16 mm) of the Gamma Knife Perfexion system, and these measurements were compared to measurements made with an A16 ion chamber and an EBT3 film and to the nominal values. We showed that a configuration in which the focus or ‘shot’ moves while the detector remains fixed is essentially equivalent to a configuration in which the focus is fixed while the detector moves. A Lucy phantom containing a PSD was moved in small steps to acquire profiles in all three dimensions. EBT3 film was inserted in the Lucy phantom and exposed to a single shot for each collimator.
The relative values for output factors measured with the PSD were 1.000, 0.892, and 0.795, for the 16 mm, 8 mm, and 4 mm collimators, respectively. The values measured with EBT3 film were 1.000, 0.881, and 0.793, and the values measured with the A16 ion chamber were 1.000, 0.883, and 0.727. The nominal output factors for the Gamma Knife Perfexion are 1.000, 0.900, and 0.814, respectively. There was excellent agreement between all profiles measured with the PSD and EBT3 as well as with the treatment planning system data provided by the vendor.
In light of our results, the Exradin W1 PSD is well suited for beam quality assurance of a Gamma Knife Perfexion irradiator.