Most previous studies of the neurophysiological effects of caffeine have focused on the effects of caffeine ingestion, and few studies have examined the effects of caffeine withdrawal. This open study evaluated the quantitative EEG (QEEG) changes occurring during a 4-day period of abstinence in subjects who habitually consume 300 mg or more of caffeine daily. Thirteen subjects underwent QEEG studies during their usual caffeine consumption (baseline) and on days 1, 2, and 4 of a 4-day period of caffeine abstinence. Ten of the subjects underwent a second QEEG on day 4 that consisted of a period of recording after reinstitution of caffeine. A comprehensive analysis of multiple quantitative variables was performed for each study during the abstinence period and compared to the variables obtained at baseline for each subject. Changes occurring during caffeine abstinence included: 1) increases in theta absolute power over all cortical areas, 2) increases in delta absolute power over the frontal cortex, 3) decreases in the mean frequency of both the alpha and beta rhythm, 4) increase in theta relative power and decrease in beta relative power, and 5) significant changes in interhemispheric coherence. Most of these changes tended to return to pre-abstinence baseline levels rapidly after resumption of caffeine consumption. The caffeine withdrawal state affects a number of neurophysiological variables. Further investigation of the neurophysiological aspects of caffeine withdrawal using placebo controlled double blind assessment methods is warranted.