The relative success of monoclonal antibodies in cancer immunotherapy and the vast manipulation potential of recombinant antibody technology have encouraged the development of novel antibody-based antitumor proteins. Many insightful reagents have been produced, mainly guided by studies on the mechanisms of action associated with complete and durable remissions, results from experimental animal models, and our current knowledge of the human immune system. Strikingly, only a small percent of these new reagents has demonstrated clinical value. Tumor burden, immune evasion, physiological resemblance, and cell plasticity are among the challenges that cancer therapy faces, and a number of antibody-based proteins are already available to deal with many of them. Some of these novel reagents have been shown to specifically increase apoptosis/cell death of tumor cells, recruit and activate immune effectors, and reveal synergistic effects not previously envisioned. In this review, we look into different approaches that have been followed during the past few years to produce these biologics and analyze their relative success, mainly in terms of their clinical performance. The use of antibody-based antitumor proteins, in combination with standard or novel therapies, is showing significant improvements in objective responses, suggesting that these reagents will become important components of the antineoplastic protocols of the future.