“…Recall that (B − , π st ) and (B, −π st ) form a pair of dual Poisson Lie groups under the pairing , (b − ,b) of their Lie algebras. Define the Poisson structure π ′ on B − × (BwB/B) byπ ′ = π st × (ρ B − , λ + ) (−π 1 ) = (π st , 0) + (0, −π 1 ) − m i=1 (x L i , 0) ∧ (0, λ + (ξ i )).It is shown in[35, Remark 9] that J ′ẇ (π st ) = π ′ as Poisson structures on B − × (BwB/B).Consider (see[17, §1.5]) the involutive anti-automorphism Θ of G determined byΘ(t) = t, t ∈ T, Θ(u α (c)) = u −α (−c), α ∈ Γ, c ∈ C.It is easy to see from the definition that Θ(π st ) = π st . Consider now the sequence of Poisson isomorphisms(BwB, π st ) Θ −→ (B − w −1 B − , π st ) J ′ Θ(ẇ) −→ (B − × (Bw −1 B/B), π ′ ) Θ×Θ −→ (B × (B − \B − wB − ), π (2) ) S −→ ((B − \B − wB − ) × B, π (3) ) I −1 w ×Id B−→ ((BwB/B) × B, π (4) ),…”