Volatile sulfur compounds (VSCs) are a major class of chemicals associated with odor from animal feeding operations (AFOs). Identifying and quantifying VSCs in air is challenging due to their volatility, reactivity, and low concentrations. In the present study, a canister-based method collected whole air in fused silica-lined (FSL) mini-canister (1.4 L) following passage through a calcium chloride drying tube. Sampled air from the canisters was removed (10-600 mL), dried, pre-concentrated, and cryofocused into a GC system with parallel detectors (mass spectrometer (MS) and pulsed flame photometric detector (PFPD)). The column effluent was split 20:1 between the MS and PFPD. The PFPD equimolar sulfur response enhanced quantitation and the location of sulfur peaks for mass spectral identity and quantitation. Limit of quantitation for the PFPD and MSD was set at the least sensitive VSC (hydrogen sulfide) and determined to be 177 and 28 pg S, respectively, or 0.300 and 0.048 μg m −3 air, respectively. Storage stability of hydrogen sulfide and methanethiol was problematic in warm humid air (25 °C, 96% relative humidity (RH)) without being dried first, however, stability in canisters dried was still only 65% after 24 h of storage. Storage stability of hydrogen sulfide sampled in the field at a swine facility was over 2 days. The greater stability of field samples compared to laboratory samples was due to the lower temperature and RH of field samples compared to laboratory generated samples. Hydrogen sulfide was the dominant odorous VSCs detected at all swine facilities with methanethiol and dimethyl sulfide detected notably above their odor threshold values. The main odorous VSC detected in aged poultry litter was dimethyl trisulfide. Other VSCs above odor threshold values for poultry facilities were methanethiol and dimethyl sulfide.
RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
AbstractVolatile sulfur compounds (VSCs) are a major class of chemicals associated with odor from animal feeding operations (AFOs). Identifying and quantifying VSCs in air is challenging due to their volatility, reactivity, and low concentrations. In the present study, a canister-based method collected whole air in fused silica-lined (FSL) mini-canister (1.4 L) following passage through a calcium chloride drying tube. Sampled air from the canisters was removed (10-600 mL), dried, preconcentrated, and cryofocused into a GC system with parallel detectors (mass spectrometer (MS) and pulsed flame photometric detector (PFPD)). The column effluent was split 20:1 between the MS and PFPD. The PFPD equimolar sulfur response enhanced quantitation and the location of sulfur peaks for mass spectral identity and quantitation. Limit of quantitation for the PFPD and MSD was set at the least sensitive VSC (hydrogen sulfide) and determined to be 177 and 28 pg S, respectively, or 0.300 and 0.048 mg m À3 air, respectively. S...