Double photoionization (DPI) allows for a sensitive and direct probe of electron correlation, which governs the structure of all matter. For atoms, much of the work in theory and experiment that informs our fullest understanding of this process has been conducted on helium, and efforts continue to explore many-electron targets with the same level of detail to understand the angular distributions of the ejected electrons in full dimensionality. Expanding on previous results, we consider here the double photoionization of two 2p valence electrons of atomic carbon and neon and explore the possible continuum states that are connected by dipole selection rules to the coupling of the outgoing electrons in 3P, 1D, and 1S initial states of the target atoms. Carbon and neon share these possible symmetries for the coupling of their valence electrons. Results are presented for the energy-sharing single differential cross section (SDCS) and triple differential cross section (TDCS), further elucidating the impact of the initial state symmetry in determining the angular distributions that are impacted by the correlation that drives the DPI process.