2023
DOI: 10.31235/osf.io/dzayg
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Double Robust, Flexible Adjustment Methods for Causal Inference: An Overview and an Evaluation

Nathan Isaac Hoffmann

Abstract: Double robust methods for flexible covariate adjustment in causal inference have proliferated in recent years. Despite their apparent advantages, these methods remain underutilized by social scientists. It is also unclear whether these methods actually outperform more traditional methods in finite samples. This paper has two aims: It is a guide to some of the latest methods in double robust, flexible covariate adjustment for causal inference, and it compares these methods to more traditional statistical method… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 52 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?