Abstract:Summary
Double sequences are important extension of the ordinary notion of a sequence. In this article we formalized three types of limits of double sequences and the theory of these limits.
First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on N (F1) with the Fréchet filter on N × N (F2), we compare limF 1 and limF 2 for all double sequences in a non empty topological space.Endou, Okazaki and Shidama formalized in [14] the "convergence in Pringsheim's sense" for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space.
…”
mentioning
confidence: 99%
“…We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence (xm,n = 1 m+1 ) (m,n) ∈ N × N converges in "Pringsheim's sense" but not in Frechet filter on N × N sense.In the next section, we generalize some definitions: "is convergent in the first coordinate", "is convergent in the second coordinate", "the lim in the first coordinate of", "the lim in the second coordinate of" according to [14], in Hausdorff space.Finally, we generalize two theorems: (3) and ( 4) from [14] in the case of double sequences and we formalize the "iterated limit" theorem ("Double limit" [7], p. 81, par. 8.5 "Double limite" [6] (TG I,57)), all in regular space.…”
mentioning
confidence: 99%
“…Endou, Okazaki and Shidama formalized in [14] the "convergence in Pringsheim's sense" for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space.…”
mentioning
confidence: 99%
“…In the next section, we generalize some definitions: "is convergent in the first coordinate", "is convergent in the second coordinate", "the lim in the first coordinate of", "the lim in the second coordinate of" according to [14], in Hausdorff space.…”
First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space.
Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence converges in “Pringsheim’s sense” but not in Frechet filter on ℕ × ℕ sense.
In the next section, we generalize some definitions: “is convergent in the first coordinate”, “is convergent in the second coordinate”, “the lim in the first coordinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff space.
Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the “iterated limit” theorem (“Double limit” [7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].
First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on N (F1) with the Fréchet filter on N × N (F2), we compare limF 1 and limF 2 for all double sequences in a non empty topological space.Endou, Okazaki and Shidama formalized in [14] the "convergence in Pringsheim's sense" for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space.
…”
mentioning
confidence: 99%
“…We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence (xm,n = 1 m+1 ) (m,n) ∈ N × N converges in "Pringsheim's sense" but not in Frechet filter on N × N sense.In the next section, we generalize some definitions: "is convergent in the first coordinate", "is convergent in the second coordinate", "the lim in the first coordinate of", "the lim in the second coordinate of" according to [14], in Hausdorff space.Finally, we generalize two theorems: (3) and ( 4) from [14] in the case of double sequences and we formalize the "iterated limit" theorem ("Double limit" [7], p. 81, par. 8.5 "Double limite" [6] (TG I,57)), all in regular space.…”
mentioning
confidence: 99%
“…Endou, Okazaki and Shidama formalized in [14] the "convergence in Pringsheim's sense" for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space.…”
mentioning
confidence: 99%
“…In the next section, we generalize some definitions: "is convergent in the first coordinate", "is convergent in the second coordinate", "the lim in the first coordinate of", "the lim in the second coordinate of" according to [14], in Hausdorff space.…”
First, we define in Mizar [5], the Cartesian product of two filters bases and the Cartesian product of two filters. After comparing the product of two Fréchet filters on ℕ (F1) with the Fréchet filter on ℕ × ℕ (F2), we compare limF₁ and limF₂ for all double sequences in a non empty topological space.
Endou, Okazaki and Shidama formalized in [14] the “convergence in Pringsheim’s sense” for double sequence of real numbers. We show some basic correspondences between the p-convergence and the filter convergence in a topological space. Then we formalize that the double sequence converges in “Pringsheim’s sense” but not in Frechet filter on ℕ × ℕ sense.
In the next section, we generalize some definitions: “is convergent in the first coordinate”, “is convergent in the second coordinate”, “the lim in the first coordinate of”, “the lim in the second coordinate of” according to [14], in Hausdorff space.
Finally, we generalize two theorems: (3) and (4) from [14] in the case of double sequences and we formalize the “iterated limit” theorem (“Double limit” [7], p. 81, par. 8.5 “Double limite” [6] (TG I,57)), all in regular space. We were inspired by the exercises (2.11.4), (2.17.5) [17] and the corrections B.10 [18].
“…The notation and terminology used in this paper have been introduced in the following articles: [5], [21], [15], [10], [12], [6], [7], [22], [13], [11], [14], [1], [2], [8], [18], [24], [25], [26], [20], [23], [3], [4], and [9].…”
In this article we introduce the convergence of extended realvalued double sequences [16], [17]. It is similar to our previous articles [15], [10]. In addition, we also prove Fatou’s lemma and the monotone convergence theorem for double sequences.
Summary
In this paper the author constructs several properties for double series and its convergence. The notions of convergence of double sequence have already been introduced in our previous paper [18]. In section 1 we introduce double series and their convergence. Then we show the relationship between Pringsheim-type convergence and iterated convergence. In section 2 we study double series having non-negative terms. As a result, we have equality of three type sums of non-negative double sequence. In section 3 we show that if a non-negative sequence is summable, then the sequence of rearrangement of terms is summable and it has the same sums. In the last section two basic relations between double sequences and matrices are introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.