In this work, the synthesis of a new polysiloxane, poly {dimethylsiloxane-co-[4-(2,3-difluoro-4-hydroxyphenoxy) butyl] methylsiloxane} (dubbed PMFOS), is presented. This polymer exhibits high hydrogen bond acidity and was designed to be used as a sensor layer in gas sensors. The description of the synthetic route of the PMFOS has been divided into two main stages: the synthesis of the functional substituent 4-(but-3-en-1-yloxy)-2,3-difluorophenol, and the post-polymerization functionalization of the polysiloxane chain (methylhydrosiloxane-dimethylsiloxane copolymer) via hydrosilylation. The synthesized material was subjected to instrumental analysis, which confirmed its structure. The performed thermal analysis made it possible to determine some properties important for the sensor application, such as glass transition temperature and decomposition temperature. The results showed that PMFOS meets the requirements for materials intended for use in gas sensors based on acoustoelectric transducers.