This review provides a comprehensive coverage of changes of the Hadley Cell extent and their impacts on the weather, climate, and society. The theories predicting the Hadley Cell width are introduced as a background for the understanding of the circulation changes and the metrics used for detection. A variety of metrics derived from various data sources have been used to quantify the Hadley Cell width. These metrics can be classified as dynamical, hydrological, thermal, and chemical metrics, based on the properties of the variables used. The dynamical metrics have faster trends than those based on thermal or hydrological metrics, with the values exceeding 1 degree per decade. The hydrological metric edge poleward trends were found a slightly faster expansion in the Northern Hemisphere than its southern counterpart. The chemical metrics show a poleward trend of more than 1 degree per decade in both hemispheres. We also suggest a few reasons for the discrepancy among trends in Hadley Cell expansion found in previous studies. Multiple forcings have been found responsible for the expansion, which seems to be more attributed to the natural variability than anthropogenic forcing. Validation of the scaling theories by the trends in Hadley Cell width suggests that theories considering the extratropical factor would be better models for predicting the Hadley Cell width changes. The Hadley Cell has an impact on different atmospheric processes on varying spatio-temporal scales, ranging from weather to climate, and finally on society. The remaining questions regarding Hadley Cell climate are briefly summarized at the end.