2019
DOI: 10.3390/e21020108
|View full text |Cite
|
Sign up to set email alerts
|

Doubly Nonnegative and Semidefinite Relaxations for the Densest k-Subgraph Problem

Abstract: The densest k-subgraph (DkS) maximization problem is to find a set of k vertices with maximum total weight of edges in the subgraph induced by this set. This problem is in general NP-hard. In this paper, two relaxation methods for solving the DkS problem are presented. One is doubly nonnegative relaxation, and the other is semidefinite relaxation with tighter relaxation compare with the relaxation of standard semidefinite. The two relaxation problems are equivalent under the suitable conditions. Moreover, the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?