Background: Accumulating evidence has shown that lncRNA growth arrest special 5 (GAS5) is a well‑known tumor suppressor in the pathogenesis of a variety of human cancers. However, the detailed role of GAS5 in osteosarcoma is largely unclear. Here, we explore the role of GAS5 in progression of osteosarcoma. Methods: The expression level of GAS5 was detected in human osteosarcoma tissues and matched adjacent tissues, as well as osteosarcoma cell lines and non-malignant osteoblast cells. Then, in vitro gain- and loss-of-function experiments, with the pcDNA-GAS5 expression vector and GAS5-siRNA, were performed in U2OS and HOS cells to determine the effect of GAS5 on osteosarcoma cell proliferation and invasion. Subsequently, we searched potential miRNA targets with bioinformatics analysis and confirmed their interaction by using luciferase reporter gene and RNA pull-down assays. The function and mechanism of miR-23a-3p in proliferation and invasion was also investigated in U2OS and HOS cells. Furthermore, rescue experiments were performed to verify the involvement of miR-23a-3p and its target gene in GAS5-mediated cell behaviors. Finally, a xenograft nude mouse model was established by subcutaneous injection with U2OS cells overexpressing GAS5 or not, and the effect of GAS5 on tumor growth in vivo was evaluated. Results: GAS5 was downregulated in human osteosarcoma tissues and cell lines. Overexpression of GAS5 could significantly suppress, and downregulation of GAS5 promoted, proliferation and invasion of osteosarcoma cells. GAS5 could directly bind with and downregulated miR-23a-3p that post-transcriptionally downregulated the tumor suppressor PTEN and positively regulated proliferation and invasion of osteosarcoma cells. Rescue experiments confirmed the involvement of miR-23a-3p and PTEN in GAS5-mediated cell behaviors by modifying the phosphatidylinositol-3-kinases/protein-serine-threonine kinase (PI3K/AKT) pathway. GAS5 could inhibit tumor growth in vivo . Conclusion: GAS5 functions as a competing endogenous RNA , sponging miR-23a-3p, to promote PTEN expression and suppress cell growth and invasion in osteosarcoma by regulating the PI3K/AKT pathway.