In this paper, the downlink performance of multi-cell distributed antenna systems (DAS) with a single user in each cell is investigated. Assuming the channel state information is available at the transmitter, four transmission modes are formulated as combinations of remote antenna units (RAUs) selection and cooperative transmission, namely, non-cooperative transmission without RAU selection (NCT), cooperative transmission without RAU selection (CT), non-cooperative transmission with RAU selection (NCT_RAUS), and cooperative transmission with RAU selection (CT_RAUS). By using probability theory, the cumulative distribution function (CDF) of a user's signal to interference plus noise ratio (SINR) and the system ergodic capacity under the above four modes are determined, and their closed-form expressions are obtained. Furthermore, the system energy efficiency (EE) is studied by introducing a realistic power consumption model of DAS. An expression for determining EE is formulated, and the closed-form tradeoff relationship between spectral efficiency (SE) and EE is derived as well. Simulation results demonstrate their consistency with the theoretical analysis and reveal the factors constraining system EE, which provide a scientific basis for future design and optimization of DAS.