Recent developments of the weak turbulence theory applied to internal waves exhibit a power-law solution of the kinetic energy equation close to the oceanic Garrett & Munk spectrum, confirming weakly nonlinear wave interactions as a likely explanation of the observed oceanic spectra. However, finite-size effects can hinder wave interactions in bounded domains, and observations often differ from theoretical predictions. This article studies the dynamical regimes experimentally developing in a stratified fluid forced by internal gravity waves in a pentagonal domain. We find that by changing the shape and increasing the dimensions of the domain, finite-size effects diminish and wave turbulence is observed. In this regime, the temporal spectra decay with a slope compatible with the Garrett-Munk spectra. Different regimes appear by changing the forcing conditions, namely discrete wave turbulence, weak wave turbulence, and strongly stratified turbulence. The buoyancy Reynolds number Re b marks well the transitions between the regimes, with weak wave turbulence occurring for 1 Re b 3.5 and strongly non-linear stratified turbulence for higher Re b .