“…This makes them less suitable for agricultural, hydrological, and environmental applications requiring daily and high spatial detail information (Vergopolan et al, 2021). Several methods have been proposed to enhance the spatial resolution of remote soil moisture estimates through a process called "downscaling" (Abbaszadeh et al, 2019;Bai et al, 2019;Cui et al, 2019;Fang et al, 2019;Guevara & Vargas, 2019;Hernandez-Sanchez et al, 2020;Liu et al, 2020;Mao et al, 2019;Montzka et al, 2020;Peng et al, 2017;Shangguan et al, 2024;Sishah et al, 2023;Xu et al, 2024;Zhu et al, 2023). Recently, machine learning techniques such as random forest (Hengl et al, 2018) have achieved advancements in the downscaling of remote soil moisture estimates, either spatially (Bai et al, 2019;Chen et al, 2019;Zappa et al, 2019;Zhao et al, 2018) or temporally (Lu et al, 2015;Mao et al, 2019;Xing et al, 2017).…”