2022
DOI: 10.5194/egusphere-2022-234
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Downscaling using Deep Convolutional Autoencoders, a case study for South East Asia

Abstract: Abstract. Inspired by recent advancements in the field of computer vision, specifically models for generating higher-resolution images from low-resolution images, we investigate the utility of a deep convolutional autoencoder for downscaling and bias correcting climate projections for South East Asia (SEA). Downscaled projections of 2 m surface temperature are generated, using autoencoders trained with data from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and data from the fifth generation ECMWF … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
(18 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?