G lobal climate change is visibly and tangibly manifested through the Arctic cryospheric system: sea ice loss, earlier spring snowmelts, thawing permafrost, retreating glaciers, and coastal erosion. While not as visibly manifest, the role of the atmosphere is also a critical component in determining the trajectory of the Arctic system. The atmosphere not only drives change, but is reciprocally being modified through a complex web of feedbacks, and is the fast-track mechanism for the transport of energy and moisture through the global system that links climate and weather. For decades, it has been recognized that fundamental components of the atmospheric system such as clouds, atmospheric trace gases, aerosols, and atmosphere-surface exchange processes compose some of the major uncertainties that limit the diagnostic or predictive skill of coupled atmosphere-ice-ocean-terrestrial models (IPCC 2013, chapter 9). Arctic nations have responded in recent decades by establishing A micrometeorological tower in Tiksi, Russia is used to determine the atmospheric-surface energy balance. (Photo credit: Vasily Kustov)