2018
DOI: 10.1080/11663081.2018.1525206
|View full text |Cite
|
Sign up to set email alerts
|

Doxastic logic: a new approach

Abstract: In this paper, I develop a new set of doxastic logical systems and I show how they can be used to solve several well-known problems in doxastic logic, for example the so-called problem of logical omniscience. According to this puzzle, the notions of knowledge and belief that are used in ordinary epistemic and doxastic symbolic systems are too idealised. Hence, those systems cannot be used to model ordinary human or human-like agents' beliefs. At best, they can describe idealised individuals. The systems in thi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
2
0
2

Year Published

2020
2020
2020
2020

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(5 citation statements)
references
References 42 publications
(10 reference statements)
1
2
0
2
Order By: Relevance
“…The results in this paper build on the author's previous work on (non-temporal) doxastic logic[89] and (non-temporal) boulesic logic[91]. See also[88,90].…”
supporting
confidence: 73%
See 2 more Smart Citations
“…The results in this paper build on the author's previous work on (non-temporal) doxastic logic[89] and (non-temporal) boulesic logic[91]. See also[88,90].…”
supporting
confidence: 73%
“…The conditions in Table 4 are concerned with some possible restrictions on the doxastic accessibility relation ('d' stands for 'doxastic'). In standard doxastic logic, the doxastic accessibility relation is usually treated as a 2-place relation (see, for example [33,76]; however, see also [37,89]). In this paper, D is a 4-place relation.…”
Section: Conditionmentioning
confidence: 99%
See 1 more Smart Citation
“…S5 2 es la lógica más fuerte de todas. Al tener no sólo a (52), sino también a (42), al que llega sólo en conjunción con (T2), S5 2 ha sido vista por algunos lógicos como el sistema que defiende que todas las propiedades modales son necesarias (cualquier sistema con (42) sólo acepta que lo son las propiedades necesarias) [16, pp. 49-50].…”
Section: óGicas Al éTicas Dox áSticas Y Epist éMicas Normalesunclassified
“…Hay sistemas lógicos que no consiguen forzar el actualismo. En la última década, Daniel Rönnedal ha desarrollado varios sistemas multimodales [39,40,41,42], pero su sistema más ambicioso [43] es una fusión que es doxástica, alética, temporal, volitiva (boulesic) y con cuantificadores de primer orden. En estos sistemas, los mundos aléticos, doxásticos y volitivos sólo se distinguen por las relaciones en las que se encuentran.…”
Section: Donde [O] Es Cualquier Operador Temporal Universal (Ie [F ] ...unclassified