1Inflammatory bowel disease (IBD) may develop due to an inflammatory response to commensal gut microbiota triggered by environmental factors in a genetically susceptible host. Isotretinoin (acne therapy) has been inconsistently associated with IBD onset and flares but prior treatment with antibiotics, also associated with IBD development, complicates the confirmation of this association. Here we studied in mice whether doxycycline, metronidazole or isotretinoin induce epigenetic modifications, and consequently change T-cell mRNA expression and/or function directly after treatment and after a 4 week recovery period. Isotretinoin induced IL-10 signaling in Tregs and naive T-cells directly after treatment and reduced effector T-cell proliferation alone and in co-culture with Tregs. Metronidazole activated processes associated with anti-inflammatory pathways in both T-cell subsets directly after the treatment period whereas doxycycline induced an immediate proinflammatory expression profile that resolved after the recovery period. Long-term changes indicated an inhibition of proliferation by doxycycline and induction of beneficial immune and metabolic pathways by metronidazole. Persistent alterations in microRNA and mRNA expression profiles after the recovery period indicate that all three medications may induce long-term epigenetic modifications in both T-cell subsets. Yet, our data do not support the induction of a long-term pro-inflammatory phenotype in murine Tregs and naive T-cells.Inflammatory bowel diseases (IBD) with the two main forms, Crohn's disease (CD) and ulcerative colitis (UC), are chronic and relapsing inflammatory conditions of the gastrointestinal tract that affect an increasing number of patients worldwide 1 . The precise pathogenesis of IBD is multifactorial and is not completely elucidated yet. It is generally considered that environmental factors represent an important contributor to the pathogenesis of IBD by triggering an inappropriate and progressive immune response to the commensal gut microbiota in a genetically predisposed host 2 . To date, genome-wide association studies have identified more than 240 IBD susceptibility loci, affecting genes involved in immune regulation, mucosal immune response, autophagy and epithelial barrier function [3][4][5] . Currently available data support the concept that IBD is a polygenic disease and suggest that non-genetic modifications involved in regulatory processes might have an impact on susceptibility and severity of disease 6 . Mechanisms of gene regulation that do not alter the basic sequence of DNA are called epigenetic regulations and have been studied extensively over the last few years. These studies have shown that epigenetic modifications are associated with a variety of diseases, e.g. IBD 7,8 , multiple sclerosis 9 , psoriasis 10 and systemic lupus erythematosus
11. The molecular basis of epigenetic regulation is complex. Importantly, changes may remain through cell division, and last for many generations (long-term effects) 12 . So far, th...