Vildagliptin is a marketed DPP4 inhibitor, used in the management of type 2 diabetes. The molecule also has notable DPP8/9 affinity, with some preference for DPP9. Therefore, we aimed to use vildagliptin as a starting point for selective DPP8/9 inhibitors, and to engineer out the parent compound's DPP4affinity. In addition, we wanted to identify substructures in the obtained molecules that allow their further optimization into inhibitors with maximal DPP9 selectivity. Various 2S-cyanopyrrolidines and isoindoline were investigated as P1 residues of vildagliptin analogs. The obtained set was expanded with derivatives bearing O-substituted, N-(3-hydroxyadamantyl)glycine moieties at the P2 position. In this way, representatives were discovered with DPP8/9 potencies comparable to the parent molecule, but with overall selectivity towards DPP4, DPP2, FAP, and PREP. Furthermore, the most promising molecules in this series have a 4-to 7-fold preference for DPP9 over DPP8. Finally, a molecular dynamics study was carried out to maximize our insight into experimental selectivity data.