2021
DOI: 10.52013/2658-7556-57-7-6
|View full text |Cite
|
Sign up to set email alerts
|

DQN-Based Traffic Signal Control Systems

Abstract: Real-time adaptive traffic control is an important problem in modern world. Historically, various optimization methods have been used to build adaptive traffic signal control systems. Recently, reinforcement learning has been advanced, and various papers showed efficiency of Deep-Q-Learning (DQN) in solving traffic control problems and providing real-time adaptive control for traffic, decreasing traffic pressure and lowering average travel time for drivers. In this paper we consider the problem of traffic sign… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 11 publications
0
0
0
Order By: Relevance