Summary
The genus Mesotoga, the only described mesophilic Thermotogae lineage, is common in mesothermic anaerobic hydrocarbon‐rich environments. Besides mesophily, Mesotoga displays lineage‐specific phenotypes, such as no or little H2 production and dependence on sulfur‐compound reduction, which may influence its ecological role. We used comparative genomics of 18 Mesotoga strains (pairwise 16S rRNA identity >99%) and a transcriptome of M. prima to investigate how life at moderate temperatures affects phylogeography and to interrogate the genomic features of its lineage‐specific metabolism. We propose that Mesotoga accomplish H2 oxidation and thiosulfate reduction using a sulfide dehydrogenase and a hydrogenase‐complex and that a pyruvate:ferredoxin oxidoreductase acquired from Clostridia is responsible for oxidizing acetate. Phylogenetic analysis revealed three distinct Mesotoga lineages (89.6%–99.9% average nucleotide identity [ANI] within lineages, 79.3%–87.6% ANI between lineages) having different geographic distribution patterns and high levels of intra‐lineage recombination but little geneflow between lineages. Including data from metagenomes, phylogeographic patterns suggest that geographical separation historically has been more important for Mesotoga than hyperthermophilic Thermotoga and we hypothesize that distribution of Mesotoga is constrained by their anaerobic lifestyle. Our data also suggest that recent anthropogenic activities and environments (e.g., wastewater treatment, oil exploration) have expanded Mesotoga habitats and dispersal capabilities.