The global atmospheric level of methane (CH4), the second most important greenhouse gas, is currently increasing by ∼10 million tons per year. Microbial oxidation in unsaturated soils is the only known biological process that removes CH4from the atmosphere, but so far, bacteria that can grow on atmospheric CH4have eluded all cultivation efforts. In this study, we have isolated a pure culture of a bacterium, strain MG08 that grows on air at atmospheric concentrations of CH4[1.86 parts per million volume (p.p.m.v.)]. This organism, namedMethylocapsa gorgona, is globally distributed in soils and closely related to uncultured members of the upland soil cluster α. CH4oxidation experiments and13C-single cell isotope analyses demonstrated that it oxidizes atmospheric CH4aerobically and assimilates carbon from both CH4and CO2. Its estimated specific affinity for CH4(a0s) is the highest for any cultivated methanotroph. However, growth on ambient air was also confirmed forMethylocapsa acidiphilaandMethylocapsa aurea, close relatives with a lower specific affinity for CH4, suggesting that the ability to utilize atmospheric CH4for growth is more widespread than previously believed. The closed genome ofM. gorgonaMG08 encodes a single particulate methane monooxygenase, the serine cycle for assimilation of carbon from CH4and CO2, and CO2fixation via the recently postulated reductive glycine pathway. It also fixes dinitrogen and expresses the genes for a high-affinity hydrogenase and carbon monoxide dehydrogenase, suggesting that atmospheric CH4oxidizers harvest additional energy from oxidation of the atmospheric trace gases carbon monoxide (0.2 p.p.m.v.) and hydrogen (0.5 p.p.m.v.).