The development process of a magnetically actuated displacement micropump is demonstrated. Two permanent magnets are driven by electromagnets in a circular housing. The magnetic plugs dynamically act as valve or as driving unit. A theoretical model is used to obtain the plug velocities in the system through the calculation of the force equilibria. Especially, the small gap between the channel wall and the plug has a large influence on the resulting pump performance. Final design parameters are obtained by computational fluid dynamics simulations, which predict occurring pressure loads and developing flow rates. Additive manufacturing can be used to build the device. All materials in the fabrication are biocompatible to allow water, liquid foods, and cell-containing fluids like blood to be pumped. A detailed experimental and theoretical comparison is given for two different pump layouts.