Bioinspired superwettable surfaces have been widely harnessed in diverse applications such as self-cleaning, oil/water separation, and liquid transport. So far, only a little work is focused on scalephobic capability of those superwettable surfaces. However, the troublesome scale deposition will inevitably be observed in our daily production and life, greatly reducing heat transfer efficiency and inhibiting the liquid transport. To address this annoying problem, as the emerging strategy, specific barrier layers are introduced onto superwettable surfaces to reduce or even avoid the direct contact between scale and the surfaces. In this feature article, we first provide the basic concept of bioinspired scalephobic surfaces with specific barrier layers. Then, we briefly introduce the typical fabrication methods of scalephobic surfaces. Later, we summarize recent progress of bioinspired scalephobic surfaces with specific barrier layers. Furthermore, we point out the guiding theory and criteria for the stability of barrier layers. Finally, we put forward the forecast on the existing problems and future direction in bioinspired scalephobic surfaces.