This study explores the impact on the stability of drying and the encapsulation of a camu camu extract (CCX) using the non-thermal, high-throughput electrospraying assisted by pressurized gas (EAPG) technique. The dried and encapsulated products by the EAPG processing techniques were compared in terms of total soluble phenolic compounds, antioxidant activity, and storage stability. Whey protein concentrate (WPC) and zein (ZN) were selected as the protective excipients for encapsulation. Dried and encapsulated products were obtained in the form of microparticles, which were smaller and more spherical in the case of the encapsulates. No significant differences were observed in the total polyphenolic content (TSP), and only relatively small differences in the antioxidant capacity were measured among samples. The generated products were subjected to various storage conditions to assess their stability and the preservation of the TSP and the antioxidant properties, i.e., 0% relative humidity (RH) and 4 °C; 0% RH and 21 °C; 23% RH and 21 °C; 56% RH and 21 °C; and UV light exposure. The results indicated that ZN encapsulation notably enhanced the retention of total soluble polyphenols and the antioxidant activity compared to WPC and dried CCX, especially in the ratio of 2:1 (encapsulating polymer: dried CCX). This study demonstrates the potential of protein-based encapsulation, particularly using ZN, for stabilizing bioactive compounds against degradation mechanisms induced by humidity, temperature, or ultraviolet radiation exposure.