The watershed-continuum model (WCM) describes fluvial-riparian ecosystems (FREs) as dynamic reach-based ecohydrogeological riverine landscapes linking aquatic, riparian, and upland domains within watersheds. FRE domains include aquatic (channels, hyporheic zones, springs, other groundwater zones and in-channel lakes), riparian, and adjacent upland zones, all of which can interact spatio-temporally. Occupying only a minute proportion of the terrestrial surface, FREs contain and process only a tiny fraction of the Earth’s freshwater, but often are highly productive, flood-disturbed, and ecologically interactive, supporting diverse, densely-packed biotic assemblages and socio-cultural resource uses and functions. FRE biodiversity is influenced by hydrogeomorphology, ecotonal transitions, and shifting habitat mosaics across stage elevation. Thus, the WCM integrates physical, biological, and socio-cultural characteristics, elements, and processes of FREs. Here, we summarize and illustrate the WCM, integrating diverse physical and ecological conceptual models to describe natural (unmanipulated) FRE dynamics. We integrate key processes affecting FRE forms and functions, and illustrate reach-based organization across temporal and spatial scales. Such a holistic approach into natural FRE structure and functions provides a baseline against which to measure and calibrate ecosystem alteration, management, and rehabilitation potential. Integration of groundwater, fluvial, and lacustrine ecological interactions within entire basins supports long-term, seasonally-based sustainable river management, which has never been more urgently needed.