2022
DOI: 10.1142/s0219498824500415
|View full text |Cite
|
Sign up to set email alerts
|

Drazin inverse and generalization of core-nilpotent decomposition

Abstract: The Drazin inverse is connected with the notion of index and core-nilpotent decomposition whenever it is discussed in the context of ring of matrices over complex field. In the absence of Drazin inverse for a given element from an arbitrary associative ring (not necessarily with unity), in this paper, the notion of right (left) core-nilpotent decomposition has been introduced and established its relations with right (left) [Formula: see text]-regular property. In fact, the class of such decomposition has been … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?