Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
While every tight oil play is unique, there are lessons that can be transferred from one play to another to improve the efficiency and pace of production operations and development. These improvements may not fit precisely in every basin or play but generally hold to themes that can be tested against and built upon. Themes such as the quantity of proppant, longer lateral length, or the number of stages can be directly tied to increased productivity. However, there are diminishing returns on these investment activities for which each operator, within a given play, will be required to identify and mitigate against. This is especially true as the industry steps in and begins developing new tight oil plays. In their nascent stages, these plays may have limited well penetrations and, as a result, limited geological and performance data from which to extrapolate. Pulling together an understanding of where the industry currently resides in terms of how to exploit these resources can provide a boost in terms of working towards greatly improved well completions. In 2019, the US EIA estimated that nearly 8 million barrels of oil per day were produced from tight oil reservoirs in the United States (US EIA, 2020). This represents over 60% of the domestic crude production, originating from multiple reservoirs in the Permian Basin (TX) as well as the Bakken (MT, ND), Eagle Ford (TX), Niobrara (CO, WY), and Anadarko Basin (OK) formations, among others. As such, there are 1,000s of wells across these numerous tight oil plays that can relate an informative story. To build this story, the interplay of geology, well spacing, lateral length, and stimulation, all critical to economic success, will be explored. This paper proposes to look back at these mature tight oil (and gas) basins and bring forth an understanding of what lessons can be applied to the emerging Powder River Basin tight oil reservoirs (Mowry and the Turner/Frontier). The authors will delve into the four broad topics of geology, well spacing, lateral length, and stimulation, highlighting case studies to demonstrate those lessons from established tight oil plays that will underpin planned activities at a Field Laboratory Test Site in the southern Powder River Basin.
While every tight oil play is unique, there are lessons that can be transferred from one play to another to improve the efficiency and pace of production operations and development. These improvements may not fit precisely in every basin or play but generally hold to themes that can be tested against and built upon. Themes such as the quantity of proppant, longer lateral length, or the number of stages can be directly tied to increased productivity. However, there are diminishing returns on these investment activities for which each operator, within a given play, will be required to identify and mitigate against. This is especially true as the industry steps in and begins developing new tight oil plays. In their nascent stages, these plays may have limited well penetrations and, as a result, limited geological and performance data from which to extrapolate. Pulling together an understanding of where the industry currently resides in terms of how to exploit these resources can provide a boost in terms of working towards greatly improved well completions. In 2019, the US EIA estimated that nearly 8 million barrels of oil per day were produced from tight oil reservoirs in the United States (US EIA, 2020). This represents over 60% of the domestic crude production, originating from multiple reservoirs in the Permian Basin (TX) as well as the Bakken (MT, ND), Eagle Ford (TX), Niobrara (CO, WY), and Anadarko Basin (OK) formations, among others. As such, there are 1,000s of wells across these numerous tight oil plays that can relate an informative story. To build this story, the interplay of geology, well spacing, lateral length, and stimulation, all critical to economic success, will be explored. This paper proposes to look back at these mature tight oil (and gas) basins and bring forth an understanding of what lessons can be applied to the emerging Powder River Basin tight oil reservoirs (Mowry and the Turner/Frontier). The authors will delve into the four broad topics of geology, well spacing, lateral length, and stimulation, highlighting case studies to demonstrate those lessons from established tight oil plays that will underpin planned activities at a Field Laboratory Test Site in the southern Powder River Basin.
A unique well-tracing design for three horizontally drilled wells is presented utilizing proppant tracers and water- and hydrocarbon-soluble tracers to evaluate multiple completion strategies. Results are combined to present an interpretation of them in the reservoir as a whole, where applicable, as well as on an individual well basis. The new approach consists of tracing the horizontal well(s) leaving unchanged segments along the wellbore to obtain relevant control group results not available otherwise. The application of the tracers throughout each wellbore was designed to mitigate or counterbalance variables out of the controllable completion engineering parameters such as heterogeneity along the wellbores, existing reservoir depletion, intra- and inter-well hydraulically driven interactions (frac hits) as well as to minimize any unloading and production biases. Completion strategies are provided, and all the evaluation methodologies are described in detail to permit readers to replicate the approach. One field case study with five horizontal wells is presented. Three infill wells were drilled between two primary wells of varying ages. All wells are shale oil wells with approximately 7,700 ft lateral sections. The recovery of each tracer is compared between the surfactant treated and untreated segments on each well and totalized to see how the petroleum reservoir system is performing. A complete project economic analysis was performed to determine the viability of a chemical additive (a production enhancement surfactant). Meticulous analysis and interpretation of the proppant image logs were performed to discern the cluster stimulation efficiency during the hydraulic fracturing treatments. Furthermore, comparisons of the cluster stimulation efficiency between the two mesh sizes of proppant pumped are also provided for each of the three new unconventional well completions. The most significant new findings are the surfactant effects on the wells’ production performance, and the impact the engineered perforations with tapered shots along the stages had on the stimulation efficiency. Both the right chemistry for the formation and higher cluster stimulation efficiencies are important because they can lead to increased well oil production. The novelty of this tracing design methodology rests in the ability to generate results with a statistically relevant sample size, therefore, increasing the confidence in the conclusions and course of action in future well completions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.