Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Production from the Halten Terrace hydrocarbon province (Mid-Norwegian shelf) is mainly from heterolithic siliciclastic successions as well as diagenetically altered sandstones. Eight hydrocarbon fields are currently in production, which produce c . 840 000 BBL oil equivalent per day, with several new fields expected to come on stream in the next decade. This paper is an introduction to a thematic set on the characterization and modelling of heterolithic reservoirs and focuses on the three main types of heterogeneity: (1) heterolithic facies, (2) faulting and (3) diagenesis. Challenges vary according to field setting: shallow (1–3 km burial depth), deep (3–5 km) or very deep (currently up to 5.6 km). Water depths vary from 200 m to 500 m. Heterolithic sedimentary packages are composed of shale or siltstone layers intercalated with clean, but often thin, sandstone layers of varying lateral extent. These were deposited in Lower Jurassic tide-influenced or tide-dominated deltaic and estuarine environments along the margin of a shallow seaway. Hydrocarbon traps are formed by faulted and rotated fault blocks created during rifting. Faulting of these heterolithic facies is a critical parameter for fluid flow, with fault transmissibility and fault position often difficult to determine. Complex patterns of diagenetic cementation are an additional aspect of heterogeneity in the deeply buried reservoirs, such as the Smørbukk and Kristin fields. However, grain coatings of chlorite, illite/chlorite and illite have prevented or hindered the development of quartz overgrowths and allowed the preservation of anomalously high porosity and permeability. Modelling and assessing the impact of these reservoir uncertainties has included development of novel tools and methods, leading to a much-improved level of understanding, better prediction of recoverable reserves and significantly increased recovery factors.
Production from the Halten Terrace hydrocarbon province (Mid-Norwegian shelf) is mainly from heterolithic siliciclastic successions as well as diagenetically altered sandstones. Eight hydrocarbon fields are currently in production, which produce c . 840 000 BBL oil equivalent per day, with several new fields expected to come on stream in the next decade. This paper is an introduction to a thematic set on the characterization and modelling of heterolithic reservoirs and focuses on the three main types of heterogeneity: (1) heterolithic facies, (2) faulting and (3) diagenesis. Challenges vary according to field setting: shallow (1–3 km burial depth), deep (3–5 km) or very deep (currently up to 5.6 km). Water depths vary from 200 m to 500 m. Heterolithic sedimentary packages are composed of shale or siltstone layers intercalated with clean, but often thin, sandstone layers of varying lateral extent. These were deposited in Lower Jurassic tide-influenced or tide-dominated deltaic and estuarine environments along the margin of a shallow seaway. Hydrocarbon traps are formed by faulted and rotated fault blocks created during rifting. Faulting of these heterolithic facies is a critical parameter for fluid flow, with fault transmissibility and fault position often difficult to determine. Complex patterns of diagenetic cementation are an additional aspect of heterogeneity in the deeply buried reservoirs, such as the Smørbukk and Kristin fields. However, grain coatings of chlorite, illite/chlorite and illite have prevented or hindered the development of quartz overgrowths and allowed the preservation of anomalously high porosity and permeability. Modelling and assessing the impact of these reservoir uncertainties has included development of novel tools and methods, leading to a much-improved level of understanding, better prediction of recoverable reserves and significantly increased recovery factors.
Summary The densely-faulted Njord reservoir in the Norwegian North Sea is considered one of the most complex reservoirs in the world. The field is developed from a semi-submersible platform with 15 subsea-completed wells drilled in a pre-drilling campaign in 1996 to 1997 and two major platform drilling campaigns, one in 1997 through 2000 and the other in 2002 to 2003. Drilling of two conventional sidetracked oil producers in the last campaign was challenging and costly. As the field matures, the need for a cheaper way of drilling sparsely located smaller undrained compartments became essential. This led to initiate an ambitious campaign called the low-cost infill targets (LIFT) for identifying and drilling those targets using a cheaper drilling technique called the through tubing rotary drilling (TTRD). TTRD is a hugely demanding task especially, from a floating platform as any economic rationale will be lost if completion accessories and well integrity are compromised through TTRD. To the best of our knowledge, no TTRD operations have previously been executed from a floater. The severity of depletion, especially with depletion and re-pressurization (Huff'n Puff) of parts of the reservoir provides a significant technical test and challenge for TTRD on Njord. The relative movement of the floater also presents extra operational challenges, which requires accurate measures to prevent damage to the tubing hanger, Christmas tree (XMT), downhole-safety valve, and existing completion string. Issues related to bottomhole assembly design to meet drilling and production needs, mud rheology, equivalent circulating density (ECD) management, rock mechanics, and completion techniques are critically analyzed and risk-reducing or eliminating measures are put in place through extensive research and development for each of the prospective targets. This paper is intended to give a comprehensive description on the technological challenges of the TTRD technology from a floating platform, research and development activities to qualify the technology on Njord, screening of drilling targets and the drilling experiences from two TTRD wells on Njord. Introduction The Njord Field is located in blocks 6407/7 and 10 in the Haltenbanken area of the Norwegian Continental Shelf approximately 130 km northwest of the operations base in Kristiansund. The field was discovered in late 1985 and went on production on 30 September 1997. Considering deep water (330 m) and limited area distribution of the reserves (6 km in diameter), the Njord Field was developed by a semi-submersible platform with production, drilling, and living quarters (PDQ) located directly above the subsea completed wells. The subsea-completed wells are connected to the platform via flexible risers. The produced oil is stored in a floating storage and offloading unit 2.5 km away from the production platform (Fig. 1). The commercial reservoir comprises the Lower Jurassic Tilje and Middle Jurassic Ile Formations in the three main areas in block 6407/7 namely, the East Flank and the Central- and Northern Areas (Fig. 2). However, the Tilje Formations constitute the main reservoirs with 89% of the total in-place oil volumes. The current in-place oil estimate for the Tilje reservoirs is 108.4 MSm3. A total of 17.9 MSm3 of oil has been produced by January 2005, which constitutes an overall oil-recovery factor of only 16.5% for this formation. The reasons for this kind of low-recovery factor are mainly two fold: depletion drive is the preferred production mechanism for the Central- and the Northern Areas, and the reservoir is heavily faulted leaving some of the fault compartments undepleted. Because of this low recovery factor, the need for improving the overall recovery factor is paramount.
This paper will describe how new technologies, such as geosteering, seismic imaging and new drilling techniques, are being pursued to improve overall net sand reservoir contact and production improvements in horizontal wells. These technologies have been implemented in offshore wells to obtain valuable geological information, improve well placement, and minimize sidetracks by reducing uncertainty. The geologically complex stringer sand reservoir is unconsolidated sandstone with a permeability of 3-5 Darcy. Proper well placement and minimizing costly sidetracks are critical to the success of this offshore field. Improvements in the well placement of horizontal wells within stringer sand reservoirs have improved immensely in the offshore fields of Saudi Arabia. New technologies and techniques involving geosteering, seismic imaging, and well design have been evaluated and field tested, and has improved the net to gross sand ratio from 50% to over 80% with a corresponding increase in production of over 50%, with opportunities for additional improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.