Drivers of the next-minute Bitcoin price using sparse regressions
Ikhlaas Gurrib,
Firuz Kamalov,
Olga Starkova
et al.
Abstract:Purpose
This paper aims to investigate the role of price-based information from major cryptocurrencies, foreign exchange, equity markets and key commodities in predicting the next-minute Bitcoin (BTC) price. This study answers the following research questions: What is the best sparse regression model to predict the next-minute price of BTC? What are the key drivers of the BTC price in high-frequency trading?
Design/methodology/approach
Least absolute shrinkage and selection operator and Ridge regressions are… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.