The advancement of data collection technologies has brought an upsurge in GPS applications. For example, travel behaviour research has benefited from the integration of multiple sources of Global Positioning System (GPS) data. However, the effective use of such data is still impeded by the challenge in data processing. For instance, GPS data, despite providing detailed spatial movement information, do not label the starting and finishing points of a trip, especially for commercial trucks. Hence, there is a critical need to develop a trip identification method to effectively use the trajectory data provided by GPS without additional information. This paper focused on identifying trips from the raw GPS data. Specifically, a systematic method is proposed to extract trips on the basis of origin-destination (OD) pairs by using a 5-step procedure. An application was provided on estimating the performance of travel time reliability using three metrics based on the OD trips for each dedicated truck. The application showed that, in general, trucks on long-distance routes have less reliable travel times compared to trucks on short-distance routes. This paper provides an example of using GPS data, without further information, to study travel time for freight performance and similar needs of punctuality in logistics.