In the recent digital age, information and communication technologies are rapidly contributing to remodel the media and journalism. Numerous technologies can be utilized by the media industry to capture news or events, taking footage and pictures of a breaking news. Technology and the media are interwoven, and neither can be detached from contemporary society in most nations. Unsurprisingly, technology has affected how and where information is shared. Nowadays, it is impractical to discuss media and the methods in which societies communicate without addressing the rapidity of technology change. Thus, the aerial journalism term has emerged, which refers to the ability of creating and conveying media content in a timely and efficient fashion. This work aims to integrate a drone with AI to empower aerial journalism via training a neural network to obtain an accurate channel using the NN-RBFN approach. The proposed work can enhance aerial media missions including investigative reporting (e.g., humanitarian crises), footage of news events (e.g., man-made and/or natural disasters), and livestreams for short-term, large-scale events (e.g., Olympic Games). In our digital media era, such a smart journalism approach would help to become far more sustainable and an eco-efficient process. Both MATLAB and 3D Remcom Wireless Insite tools have been used to carry out the simulation work. Simulated results indicate that the proposed NN-RBFN managed to obtain an accurate channel propagation model in a 3D scenario with a high accuracy rate reaching 99%. The proposed framework also could offer various media and journalism services (e.g., high data rate, wider coverage footprint) in timely and cost-effective manners in both normal scenarios or even in hard-to-reach zones and/or short-term, large-scale events.