Non-genuine medical products, including diagnostic devices, have become a lucrative business for fraudsters, causing significant damage to revenues and reputation of companies, as well as posing a significant risk to the health of people and societies. Along a “digital twin” representing centrifugal microfluidic flow control on exemplary “Lab-on-a-Disc” (LoaD) systems, a novel, two-pronged strategy to safeguard miniaturized point-of-care devices by means of secret features and manufacturing challenges is outlined; such “hardware encryption” is flexibly programmed for each chip during production, and deciphered from a secure, local or online database at the time of use. This way, unlicensed copying may be efficiently deterred by an unfavourable economy-of-scale, even in absence of legal prosecution.