Molecular tests for infectious diseases and genetic anomalies, which account for significant global morbidity and mortality, are central to nucleic acid analysis. In this study, we present a digital droplet LAMP (ddLAMP) platform that offers a cost-effective and portable solution for such assays. Our approach integrates disposable 3D-printed droplet generator chips with a consumer smartphone equipped with a custom image analysis application for conducting ddLAMP assays, thereby eliminating the necessity for expensive and complicated photolithographic techniques, optical microscopes, or flow cytometers. Our 3D printing technique for microfluidic chips facilitates rapid chip fabrication in under 2 h, without the complications of photolithography or chip bonding. The platform’s heating mechanism incorporates low-powered miniature heating blocks with dual resistive cartridges, ensuring rapid and accurate temperature modulation in a compact form. Instrumentation is further simplified by integrating miniaturized magnification and fluorescence optics with a smartphone camera. The fluorescence quantification benefits from our previously established RGB to CIE-xyY transformation, enhancing signal dynamic range. Performance assessment of our ddLAMP system revealed a limit of detection at 10 copies/μL, spanning a dynamic range up to 104 copies/μL. Notably, experimentally determined values of the fraction of positive droplets for varying DNA concentrations aligned with the anticipated exponential trend per Poisson statistics. Our holistic ddLAMP platform, inclusive of chip production, heating, and smartphone-based droplet evaluation, provides a refined method compatible with standard laboratory environments, alleviating the challenges of traditional photolithographic methods and intricate droplet microfluidics expertise.