Neurodevelopmental disorders are a heterogeneous group of behaviorally defined disorders with both genetic and environmental risk factors. Given that many neurodevelopmental disorders are characterized by impaired learning and/or intellectual abilities, behavioral paradigms that assess cognition in animal models have been effective tools in delineating underlying genetic variants that impact disease pathophysiology. For example, learning and memory paradigms in the common fruit fly Drosophila melanogaster have been successfully used to study risk genes and biological pathways associated with several neurodevelopmental disorders, including fragile X syndrome, autism spectrum disorder, and CHARGE syndrome. While these established Drosophila behavioral paradigms have historically been used to investigate genetic risk factors, they also have many other applications, including use in developmental neurotoxicology studies to determine environmental risk factors for neurodevelopmental disorders. There is, however, a deficit of step‐by‐step protocols that describe how to apply learning and memory assays in fruit flies to developmental neurotoxicology studies. Here, we describe two quantitative behavioral paradigms for Drosophila—predator‐induced oviposition and courtship conditioning—that can be used to measure different forms of learning and memory in the context of a developmental neurotoxicology study. Non‐associative learning and memory are measured here by examining female Drosophila oviposition behavior in response to endoparasitoid wasps, while associative learning and memory are measured in males using courtship conditioning. Our protocols outline procedures for oral toxicant exposure of developing fruit flies, culturing of endoparasitoid wasps, measuring Drosophila oviposition activity, and assessing conditioned courtship in order to identify the impact of toxicants on learning and memory in both females and males. As an example, we present the protocols using bisphenol A, a chemical utilized in the synthesis of polycarbonate plastics, to determine its impacts on learning and memory. These protocols are inexpensive and relatively simple to perform, and can be used by labs that are new to Drosophila behavioral research to evaluate how toxicant exposure influences learning and memory in male and female flies. © 2022 Wiley Periodicals LLC.
Basic Protocol 1: Preparation of toxicant‐containing food and developmental exposure
Basic Protocol 2: Predator‐induced oviposition assay
Support Protocol: Culture of Leptopilina heterotoma
Basic Protocol 3: Conditioned courtship assay