Rhododendrons in numerous gardens in Central Europe are frequently endangered by adverse summer drought periods associated with the climate change. Therefore, in this work drought-resistance strategies in recent genotypes of these highly aesthetic shrubs were investigated. Dehydrated Rhododendron groenlandicum ‘Helma’, R. obtusum ‘Michiko’ and R. hybridum ‘Polarnacht’ showed high initial stomatal conductances (gS), after few days steeply falling to the stable minimum at ca. 20, 85 and 70% leaf relative water content (RWC), respectively. Except of ‘Polarnacht’, they had relatively large specific leaf area and ‘Michiko’ also free proline accumulation. On the other hand, R. repens ‘Scarlet Wonder’ and R. hybridum ‘Red Jack’ started with half gS values, continuously declining 1.5–2 fold longer compared to the first group of genotypes (RWC of ca. 60 and 75%, respectively). Both produced relatively thick leaves but did not show any osmotic adjustment. Among observed drought-resistance strategies, lower and longer period active transpiration with stomata sensitive to the water loss, as found in R. repens ‘Scarlet Wonder’ and R. × hybridum ‘Red Jack’, were accepted as the most effective for drought-affected rhododendron plantations.