Quantifying changes in the vulnerability of vegetation to various drought stresses in different seasons is important for rational and effective ecological conservation and restoration. However, the vulnerability of vegetation and its dynamics in a changing environment are still unknown, and quantitative attribution analysis of vulnerability changes has been rarely studied. To this end, this study explored the changes of vegetation vulnerability characteristics under various drought stresses in Xinjiang and conducted quantitative attribution analysis using the random forest method. In addition, the effects of ecological water transport and increased irrigation areas on vegetation vulnerability dynamics were examined. The standardized precipitation index (SPI), standardized precipitation-evapotranspiration index (SPEI), and standardized soil moisture index (SSMI) represent atmospheric water supply stress, water and heat supply stress, and soil water supply stress, respectively. The results showed that: (1) different vegetation types responded differently to water stress, with grasslands being more sensitive than forests and croplands in summer; (2) increased vegetation vulnerability under drought stresses dominated in Xinjiang after 2003, with vegetation growth and near-surface temperature being the main drivers, while increased soil moisture in the root zone was the main driver of decreased vegetation vulnerability; (3) vulnerability of cropland to SPI/SPEI/SSMI-related water stress increased due to the rapid expansion of irrigation areas, which led to increasing water demand in autumn that was difficult to meet; and (4) after ecological water transport of the Tarim River Basin, the vulnerability of its downstream vegetation to drought was reduced.