From 1980 to 2020, drought events accounted for only 11.4% of the billion-dollar disasters in the United States (U.S.), yet caused the second-highest total amount in damages, at USD 236.6 billion. With the average cost of a drought being upwards of USD 9.5 billion, these natural disasters can create serious problems in agriculture. Drought is defined as a period of below-average precipitation that causes damage to agriculture and water supplies. Previous research has linked drought events in the U.S. Great Plains to oceanic teleconnections in the Pacific and Atlantic basins, indicating the influence of El Niño—Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO). This study looks to identify areas of the Great Plains where drought, as measured by PDSI, has the strongest relationship to ENSO, PDO, and AMO from 1950 to 2019. The states studied are Iowa, Illinois, Minnesota, Texas, Nebraska, and Kansas because these rank as the second through seventh most agriculturally productive states in terms of crop and livestock production. Results show that most of this region displays a relationship between drought and the ENSO and PDO, with less of the region displaying a relationship with the AMO.