Background: The JewelPUMP™ (JP) is a new patch pump based on a microelectromechanical system that operates without any plunger. The study aimed to evaluate the infusion accuracy of the JP in vitro and in vivo.
Methods:For the in vitro studies, commercially available pumps meeting the ISO standard were compared to the JP: the MiniMed® Paradigm® 712 (MP), Accu-Chek® Combo (AC), OmniPod® (OP), Animas® Vibe™ (AN). Pump accuracy was measured over 24 hours using a continuous microweighing method, at 0.1 and 1 IU/h basal rates. The occlusion alarm threshold was measured after a catheter occlusion. The JP, filled with physiological serum, was then tested in 13 patients with type 1 diabetes simultaneously with their own pump for 2 days. The weight difference was used to calculate the infused insulin volume.
Results:The JP showed reduced absolute median error rate in vitro over a 15-minute observation window compared to other pumps (1 IU/h): ±1.02% (JP) vs ±1.60% (AN), ±1.66% (AC), ±2.22% (MP), and ±4.63% (OP), P < .0001. But there was no difference over 24 hours. At 0.5 IU/h, the JP was able to detect an occlusion earlier than other pumps: 21 (19; 25) minutes vs 90 (85; 95), 58 (42; 74), and 143 (132; 218) minutes (AN, AC, MP), P < .05 vs AN and MP. In patients, the 24-hour flow error was not significantly different between the JP and usual pumps (-2.2 ± 5.6% vs -0.37 ± 4.0%, P = .25). The JP was found to be easier to wear than conventional pumps.
Conclusions:The JP is more precise over a short time period, more sensitive to catheter occlusion, well accepted by patients, and consequently, of potential interest for a closed-loop insulin delivery system. Keywords catheter occlusion, continuous subcutaneous insulin infusion (CSII), insulin delivery accuracy, insulin pump, insulin therapy, microelectromechanical system (MEMS), patch pump, type 1 diabetes