Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Pharmacophore modeling is a successful yet very diverse subfield of computer-aided drug design. The concept of the pharmacophore has been widely applied to the rational design of novel drugs. In this paper, we review the computational implementation of this concept and its common usage in the drug discovery process. Pharmacophores can be used to represent and identify molecules on a 2D or 3D level by schematically depicting the key elements of molecular recognition. The most common application of pharmacophores is virtual screening, and different strategies are possible depending on the prior knowledge. However, the pharmacophore concept is also useful for ADME-tox modeling, side effect, and off-target prediction as well as target identification. Furthermore, pharmacophores are often combined with molecular docking simulations to improve virtual screening. We conclude this review by summarizing the new areas where significant progress may be expected through the application of pharmacophore modeling; these include protein-protein interaction inhibitors and protein design. Keywords: ADME-tox, computer-aided drug design, pharmacophore fingerprint, protein design, virtual screening What is computer-aided drug design?Drug design is an expensive and laborious process of developing new medicine. This process has its origin in herbal remedies dating back millennia.1 Only since the last century have drugs had a (semi)synthetic origin.2 The first hit compounds often lack both potency and safety, and must therefore be optimized. While historically this was a trial-and-error process, 3,4 soon rational strategies were developed to improve potency. 5,6 As with any data handling procedures, computers have become a more prominent and ubiquitous tool in drug discovery since the 1980s. The crossover between computational and pharmaceutical research is typically designated computer-aided drug design (CADD). 8,9 CADD covers a broad range of applications spanning the drug discovery pipeline, although these are highly clustered in the early phases. The main purpose of CADD is to speed up and rationalize the drug design process while reducing costs. 10 The aim of the earliest phase in drug discovery is to identify the first hit compounds, which is sometimes attempted by high-throughput screening (HTS), the testing of many thousands of compounds with a suitable activity assay. The in silico counterpart of in vitro HTS is referred to as virtual screening and aims at filtering libraries of molecules using computational methods to prioritize those most likely to be active for a given
Pharmacophore modeling is a successful yet very diverse subfield of computer-aided drug design. The concept of the pharmacophore has been widely applied to the rational design of novel drugs. In this paper, we review the computational implementation of this concept and its common usage in the drug discovery process. Pharmacophores can be used to represent and identify molecules on a 2D or 3D level by schematically depicting the key elements of molecular recognition. The most common application of pharmacophores is virtual screening, and different strategies are possible depending on the prior knowledge. However, the pharmacophore concept is also useful for ADME-tox modeling, side effect, and off-target prediction as well as target identification. Furthermore, pharmacophores are often combined with molecular docking simulations to improve virtual screening. We conclude this review by summarizing the new areas where significant progress may be expected through the application of pharmacophore modeling; these include protein-protein interaction inhibitors and protein design. Keywords: ADME-tox, computer-aided drug design, pharmacophore fingerprint, protein design, virtual screening What is computer-aided drug design?Drug design is an expensive and laborious process of developing new medicine. This process has its origin in herbal remedies dating back millennia.1 Only since the last century have drugs had a (semi)synthetic origin.2 The first hit compounds often lack both potency and safety, and must therefore be optimized. While historically this was a trial-and-error process, 3,4 soon rational strategies were developed to improve potency. 5,6 As with any data handling procedures, computers have become a more prominent and ubiquitous tool in drug discovery since the 1980s. The crossover between computational and pharmaceutical research is typically designated computer-aided drug design (CADD). 8,9 CADD covers a broad range of applications spanning the drug discovery pipeline, although these are highly clustered in the early phases. The main purpose of CADD is to speed up and rationalize the drug design process while reducing costs. 10 The aim of the earliest phase in drug discovery is to identify the first hit compounds, which is sometimes attempted by high-throughput screening (HTS), the testing of many thousands of compounds with a suitable activity assay. The in silico counterpart of in vitro HTS is referred to as virtual screening and aims at filtering libraries of molecules using computational methods to prioritize those most likely to be active for a given
The increasing resistance of Mycobacterium tuberculosis to the existing drugs has alarmed the worldwide scientific community. In an attempt to overcome this problem computer-aided drug design has provide an extraordinary support to the different strategies in drug discovery. There are around 250 biological receptors like enzymes that can be used in principle, for the design of antituberculosis compounds that act by a specific mechanism of action. Also, there more than 5000 compound available in the literature, and that constitute important information in order to search new molecular patterns for the design of new antituberculosis agents. The purpose of this paper is to explored the current state of drug discovery of antituberculosis agents and how the different strategies supported by computer-aided drug design methods has influenced in a determinant way in the design of new molecular entities that can result the future antituberculosis drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.