Diabetic nephropathy (DN) is one of the most serious complications of diabetes and the main cause of end-stage renal failure. Rhubarb is a widely used traditional Chinese herb, and it has exhibited efficacy in reducing proteinuria, lowering blood sugar levels and improving kidney function in patients with DN. However, the exact pharmacological mechanism by rhubarb improves DN remain unclear due to the complexity of its ingredients. Hence, we systematically explored the underlying mechanisms of rhubarb in the treatment of DN. We adopted a network pharmacology approach, focusing on the identification of active ingredients, drug target prediction, gene collection, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment. Molecular docking technology was used to verify the binding ability between the main active compounds and central therapeutic targets, and screen out the core active ingredients in rhubarb for the treatment of DN. Finally, molecular dynamics simulation was performed for the optimal core protein-ligand obtained by molecular docking using GROMACS software. The network analysis identified 16 active compounds in rhubarb that were linked to 37 possible therapeutic targets related to DN. Through protein–protein interaction analysis, TP53, CASP8, CASP3, MYC, JUN and PTGS2 were identified as the key therapeutic targets. By validation of molecular docking, finding that the central therapeutic targets have good affinities with the main active compounds of rhubarb, and rhein, beta-sitosterol and aloe-emodin were identified as the core active ingredients in rhubarb for the treatment of DN. Results from molecular dynamics simulations showed that TP53 and aloe-emodin bound very stably with a binding free energy of − 26.98 kcal/mol between the two. The results of the gene enrichment analysis revealed that the PI3K-Akt signalling pathway, p53 signalling pathway, AGE-RAGE signalling pathway and MAPK signalling pathway might be the key pathways for the treatment of DN, and these pathways were involved in podocyte apoptosis, glomerular mesangial cell proliferation, inflammation and renal fibrosis. Based on the network pharmacology approach and molecular docking technology, we successfully predicted the active compounds and their respective targets. In addition, we illustrated the molecular mechanisms that mediate the therapeutic effects of rhubarb against DN. These findings provided an important scientific basis for further research of the mechanism of rhubarb in the treatment of DN.